Magnetic Structure and Magnetoelectric Coupling in Bulk and Thin Film FeVO4
نویسندگان
چکیده
We have investigated the magnetoelectric and magnetodielectric response in FeVO4, which exhibits a change in magnetic structure coincident with ferroelectric ordering at TN2≈15 K. Using symmetry considerations, we construct a model for the possible magnetoelectric coupling in this system and present a discussion of the allowed spin structures in FeVO4. Based on this model, in which the spontaneous polarization is caused by a trilinear spin-phonon interaction, we experimentally explore the magnetoelectric coupling in FeVO4 thin films through measurements of the electric field-induced shift of the multiferroic phase transition temperature, which exhibits an increase of 0.25 K in an applied field of 4 MV/m. The strong spin-charge coupling in FeVO4 is also reflected in the significant magnetodielectric shift, which is present in the paramagnetic phase due to a quartic spin-phonon interaction and shows a marked enhancement with the onset of magnetic order which we attribute to the trilinear spin-phonon interaction. We observe a clear magnetic field-induced dielectric anomaly at lower temperatures, distinct from the sharp peak associated with the multiferroic transition, which we tentatively assign to a spin-reorientation crossover. We also present a magnetoelectric phase diagram for FeVO4. Disciplines Physics | Quantum Physics This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/324 Magnetic structure and magnetoelectric coupling in bulk and thin film FeVO4 A. Dixit,1 G. Lawes,1 and A. B. Harris2 1Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA 2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Received 1 June 2010; published 29 July 2010 We have investigated the magnetoelectric and magnetodielectric response in FeVO4, which exhibits a change in magnetic structure coincident with ferroelectric ordering at TN2 15 K. Using symmetry considerations, we construct a model for the possible magnetoelectric coupling in this system and present a discussion of the allowed spin structures in FeVO4. Based on this model, in which the spontaneous polarization is caused by a trilinear spin-phonon interaction, we experimentally explore the magnetoelectric coupling in FeVO4 thin films through measurements of the electric field-induced shift of the multiferroic phase transition temperature, which exhibits an increase of 0.25 K in an applied field of 4 MV/m. The strong spin-charge coupling in FeVO4 is also reflected in the significant magnetodielectric shift, which is present in the paramagnetic phase due to a quartic spin-phonon interaction and shows a marked enhancement with the onset of magnetic order which we attribute to the trilinear spin-phonon interaction. We observe a clear magnetic field-induced dielectric anomaly at lower temperatures, distinct from the sharp peak associated with the multiferroic transition, which we tentatively assign to a spin-reorientation crossover. We also present a magnetoelectric phase diagram for FeVO4. DOI: 10.1103/PhysRevB.82.024430 PACS number s : 75.85. t, 77.55.Nv, 75.25. j
منابع مشابه
Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives
Magnetoelectric composites and heterostructures integrate magnetic and dielectric materials to produce new functionalities, e.g., magnetoelectric responses that are absent in each of the constituent materials but emerge through the coupling between magnetic order in the magnetic material and electric order in the dielectric material. The magnetoelectric coupling in these composites and heterost...
متن کاملPhase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films
We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30-40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric ...
متن کاملSynthesis, Characterization and Investigation Magnetic and Photovoltaic properties of FeVO4 Nanoparticles
This research reports a facile ultrasonic approach for the synthesis of iron vanadate (FeVO4) nanoparticles with the aid of ammonium metavanadate (NH4VO3) and Fe(NO3)3.9H2O as the starting reagents without adding external surfactant, capping agent or template in an aqueous solution. Furthermore, to examine the solar cell application of as-synthesized iron vanadate (FeVO4) nanoparticles, FTO/TiO...
متن کاملQuantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface
Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanism...
متن کاملMagnetoelectric coupling at metal surfaces.
Magnetoelectric coupling allows the magnetic state of a material to be changed by an applied electric field. To date, this phenomenon has mainly been observed in insulating materials such as complex multiferroic oxides. Bulk metallic systems do not exhibit magnetoelectric coupling, because applied electric fields are screened by conduction electrons. We demonstrate strong magnetoelectric coupli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017